1 /*
2 * Copyright (C) 2011 The Guava Authors
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
5 * in compliance with the License. You may obtain a copy of the License at
6 *
7 * http://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software distributed under the License
10 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
11 * or implied. See the License for the specific language governing permissions and limitations under
12 * the License.
13 */
14
15 package com.google.common.hash;
16
17 import static com.google.common.base.Preconditions.checkArgument;
18 import static com.google.common.base.Preconditions.checkNotNull;
19
20 import com.google.common.annotations.Beta;
21 import com.google.common.annotations.VisibleForTesting;
22 import com.google.common.base.Objects;
23 import com.google.common.base.Predicate;
24 import com.google.common.hash.BloomFilterStrategies.BitArray;
25 import com.google.common.primitives.SignedBytes;
26 import com.google.common.primitives.UnsignedBytes;
27
28 import java.io.DataInputStream;
29 import java.io.DataOutputStream;
30 import java.io.IOException;
31 import java.io.InputStream;
32 import java.io.OutputStream;
33 import java.io.Serializable;
34
35 import javax.annotation.Nullable;
36
37 /**
38 * A Bloom filter for instances of {@code T}. A Bloom filter offers an approximate containment test
39 * with one-sided error: if it claims that an element is contained in it, this might be in error,
40 * but if it claims that an element is <i>not</i> contained in it, then this is definitely true.
41 *
42 * <p>If you are unfamiliar with Bloom filters, this nice
43 * <a href="http://llimllib.github.com/bloomfilter-tutorial/">tutorial</a> may help you understand
44 * how they work.
45 *
46 * <p>The false positive probability ({@code FPP}) of a bloom filter is defined as the probability
47 * that {@linkplain #mightContain(Object)} will erroneously return {@code true} for an object that
48 * has not actually been put in the {@code BloomFilter}.
49 *
50 * <p>Bloom filters are serializable. They also support a more compact serial representation via
51 * the {@link #writeTo} and {@link #readFrom} methods. Both serialized forms will continue to be
52 * supported by future versions of this library. However, serial forms generated by newer versions
53 * of the code may not be readable by older versions of the code (e.g., a serialized bloom filter
54 * generated today may <i>not</i> be readable by a binary that was compiled 6 months ago).
55 *
56 * @param <T> the type of instances that the {@code BloomFilter} accepts
57 * @author Dimitris Andreou
58 * @author Kevin Bourrillion
59 * @since 11.0
60 */
61 @Beta
62 public final class BloomFilter<T> implements Predicate<T>, Serializable {
63 /**
64 * A strategy to translate T instances, to {@code numHashFunctions} bit indexes.
65 *
66 * <p>Implementations should be collections of pure functions (i.e. stateless).
67 */
68 interface Strategy extends java.io.Serializable {
69
70 /**
71 * Sets {@code numHashFunctions} bits of the given bit array, by hashing a user element.
72 *
73 * <p>Returns whether any bits changed as a result of this operation.
74 */
75 <T> boolean put(T object, Funnel<? super T> funnel, int numHashFunctions, BitArray bits);
76
77 /**
78 * Queries {@code numHashFunctions} bits of the given bit array, by hashing a user element;
79 * returns {@code true} if and only if all selected bits are set.
80 */
81 <T> boolean mightContain(
82 T object, Funnel<? super T> funnel, int numHashFunctions, BitArray bits);
83
84 /**
85 * Identifier used to encode this strategy, when marshalled as part of a BloomFilter.
86 * Only values in the [-128, 127] range are valid for the compact serial form.
87 * Non-negative values are reserved for enums defined in BloomFilterStrategies;
88 * negative values are reserved for any custom, stateful strategy we may define
89 * (e.g. any kind of strategy that would depend on user input).
90 */
91 int ordinal();
92 }
93
94 /** The bit set of the BloomFilter (not necessarily power of 2!)*/
95 private final BitArray bits;
96
97 /** Number of hashes per element */
98 private final int numHashFunctions;
99
100 /** The funnel to translate Ts to bytes */
101 private final Funnel<? super T> funnel;
102
103 /**
104 * The strategy we employ to map an element T to {@code numHashFunctions} bit indexes.
105 */
106 private final Strategy strategy;
107
108 /**
109 * Creates a BloomFilter.
110 */
111 private BloomFilter(BitArray bits, int numHashFunctions, Funnel<? super T> funnel,
112 Strategy strategy) {
113 checkArgument(numHashFunctions > 0,
114 "numHashFunctions (%s) must be > 0", numHashFunctions);
115 checkArgument(numHashFunctions <= 255,
116 "numHashFunctions (%s) must be <= 255", numHashFunctions);
117 this.bits = checkNotNull(bits);
118 this.numHashFunctions = numHashFunctions;
119 this.funnel = checkNotNull(funnel);
120 this.strategy = checkNotNull(strategy);
121 }
122
123 /**
124 * Creates a new {@code BloomFilter} that's a copy of this instance. The new instance is equal to
125 * this instance but shares no mutable state.
126 *
127 * @since 12.0
128 */
129 public BloomFilter<T> copy() {
130 return new BloomFilter<T>(bits.copy(), numHashFunctions, funnel, strategy);
131 }
132
133 /**
134 * Returns {@code true} if the element <i>might</i> have been put in this Bloom filter,
135 * {@code false} if this is <i>definitely</i> not the case.
136 */
137 public boolean mightContain(T object) {
138 return strategy.mightContain(object, funnel, numHashFunctions, bits);
139 }
140
141 /**
142 * @deprecated Provided only to satisfy the {@link Predicate} interface; use {@link #mightContain}
143 * instead.
144 */
145 @Deprecated
146 @Override
147 public boolean apply(T input) {
148 return mightContain(input);
149 }
150
151 /**
152 * Puts an element into this {@code BloomFilter}. Ensures that subsequent invocations of
153 * {@link #mightContain(Object)} with the same element will always return {@code true}.
154 *
155 * @return true if the bloom filter's bits changed as a result of this operation. If the bits
156 * changed, this is <i>definitely</i> the first time {@code object} has been added to the
157 * filter. If the bits haven't changed, this <i>might</i> be the first time {@code object}
158 * has been added to the filter. Note that {@code put(t)} always returns the
159 * <i>opposite</i> result to what {@code mightContain(t)} would have returned at the time
160 * it is called."
161 * @since 12.0 (present in 11.0 with {@code void} return type})
162 */
163 public boolean put(T object) {
164 return strategy.put(object, funnel, numHashFunctions, bits);
165 }
166
167 /**
168 * Returns the probability that {@linkplain #mightContain(Object)} will erroneously return
169 * {@code true} for an object that has not actually been put in the {@code BloomFilter}.
170 *
171 * <p>Ideally, this number should be close to the {@code fpp} parameter
172 * passed in {@linkplain #create(Funnel, int, double)}, or smaller. If it is
173 * significantly higher, it is usually the case that too many elements (more than
174 * expected) have been put in the {@code BloomFilter}, degenerating it.
175 *
176 * @since 14.0 (since 11.0 as expectedFalsePositiveProbability())
177 */
178 public double expectedFpp() {
179 // You down with FPP? (Yeah you know me!) Who's down with FPP? (Every last homie!)
180 return Math.pow((double) bits.bitCount() / bitSize(), numHashFunctions);
181 }
182
183 /**
184 * Returns the number of bits in the underlying bit array.
185 */
186 @VisibleForTesting long bitSize() {
187 return bits.bitSize();
188 }
189
190 /**
191 * Determines whether a given bloom filter is compatible with this bloom filter. For two
192 * bloom filters to be compatible, they must:
193 *
194 * <ul>
195 * <li>not be the same instance
196 * <li>have the same number of hash functions
197 * <li>have the same bit size
198 * <li>have the same strategy
199 * <li>have equal funnels
200 * <ul>
201 *
202 * @param that The bloom filter to check for compatibility.
203 * @since 15.0
204 */
205 public boolean isCompatible(BloomFilter<T> that) {
206 checkNotNull(that);
207 return (this != that) &&
208 (this.numHashFunctions == that.numHashFunctions) &&
209 (this.bitSize() == that.bitSize()) &&
210 (this.strategy.equals(that.strategy)) &&
211 (this.funnel.equals(that.funnel));
212 }
213
214 /**
215 * Combines this bloom filter with another bloom filter by performing a bitwise OR of the
216 * underlying data. The mutations happen to <b>this</b> instance. Callers must ensure the
217 * bloom filters are appropriately sized to avoid saturating them.
218 *
219 * @param that The bloom filter to combine this bloom filter with. It is not mutated.
220 * @throws IllegalArgumentException if {@code isCompatible(that) == false}
221 *
222 * @since 15.0
223 */
224 public void putAll(BloomFilter<T> that) {
225 checkNotNull(that);
226 checkArgument(this != that, "Cannot combine a BloomFilter with itself.");
227 checkArgument(this.numHashFunctions == that.numHashFunctions,
228 "BloomFilters must have the same number of hash functions (%s != %s)",
229 this.numHashFunctions, that.numHashFunctions);
230 checkArgument(this.bitSize() == that.bitSize(),
231 "BloomFilters must have the same size underlying bit arrays (%s != %s)",
232 this.bitSize(), that.bitSize());
233 checkArgument(this.strategy.equals(that.strategy),
234 "BloomFilters must have equal strategies (%s != %s)",
235 this.strategy, that.strategy);
236 checkArgument(this.funnel.equals(that.funnel),
237 "BloomFilters must have equal funnels (%s != %s)",
238 this.funnel, that.funnel);
239 this.bits.putAll(that.bits);
240 }
241
242 @Override
243 public boolean equals(@Nullable Object object) {
244 if (object == this) {
245 return true;
246 }
247 if (object instanceof BloomFilter) {
248 BloomFilter<?> that = (BloomFilter<?>) object;
249 return this.numHashFunctions == that.numHashFunctions
250 && this.funnel.equals(that.funnel)
251 && this.bits.equals(that.bits)
252 && this.strategy.equals(that.strategy);
253 }
254 return false;
255 }
256
257 @Override
258 public int hashCode() {
259 return Objects.hashCode(numHashFunctions, funnel, strategy, bits);
260 }
261
262 private static final Strategy DEFAULT_STRATEGY =
263 BloomFilterStrategies.MURMUR128_MITZ_64;
264
265 /**
266 * Creates a {@link BloomFilter BloomFilter<T>} with the expected number of
267 * insertions and expected false positive probability.
268 *
269 * <p>Note that overflowing a {@code BloomFilter} with significantly more elements
270 * than specified, will result in its saturation, and a sharp deterioration of its
271 * false positive probability.
272 *
273 * <p>The constructed {@code BloomFilter<T>} will be serializable if the provided
274 * {@code Funnel<T>} is.
275 *
276 * <p>It is recommended that the funnel be implemented as a Java enum. This has the
277 * benefit of ensuring proper serialization and deserialization, which is important
278 * since {@link #equals} also relies on object identity of funnels.
279 *
280 * @param funnel the funnel of T's that the constructed {@code BloomFilter<T>} will use
281 * @param expectedInsertions the number of expected insertions to the constructed
282 * {@code BloomFilter<T>}; must be positive
283 * @param fpp the desired false positive probability (must be positive and less than 1.0)
284 * @return a {@code BloomFilter}
285 */
286 public static <T> BloomFilter<T> create(
287 Funnel<? super T> funnel, int expectedInsertions /* n */, double fpp) {
288 return create(funnel, expectedInsertions, fpp, DEFAULT_STRATEGY);
289 }
290
291 @VisibleForTesting
292 static <T> BloomFilter<T> create(
293 Funnel<? super T> funnel, int expectedInsertions /* n */, double fpp, Strategy strategy) {
294 checkNotNull(funnel);
295 checkArgument(expectedInsertions >= 0, "Expected insertions (%s) must be >= 0",
296 expectedInsertions);
297 checkArgument(fpp > 0.0, "False positive probability (%s) must be > 0.0", fpp);
298 checkArgument(fpp < 1.0, "False positive probability (%s) must be < 1.0", fpp);
299 checkNotNull(strategy);
300
301 if (expectedInsertions == 0) {
302 expectedInsertions = 1;
303 }
304 /*
305 * TODO(user): Put a warning in the javadoc about tiny fpp values,
306 * since the resulting size is proportional to -log(p), but there is not
307 * much of a point after all, e.g. optimalM(1000, 0.0000000000000001) = 76680
308 * which is less than 10kb. Who cares!
309 */
310 long numBits = optimalNumOfBits(expectedInsertions, fpp);
311 int numHashFunctions = optimalNumOfHashFunctions(expectedInsertions, numBits);
312 try {
313 return new BloomFilter<T>(new BitArray(numBits), numHashFunctions, funnel, strategy);
314 } catch (IllegalArgumentException e) {
315 throw new IllegalArgumentException("Could not create BloomFilter of " + numBits + " bits", e);
316 }
317 }
318
319 /**
320 * Creates a {@link BloomFilter BloomFilter<T>} with the expected number of
321 * insertions and a default expected false positive probability of 3%.
322 *
323 * <p>Note that overflowing a {@code BloomFilter} with significantly more elements
324 * than specified, will result in its saturation, and a sharp deterioration of its
325 * false positive probability.
326 *
327 * <p>The constructed {@code BloomFilter<T>} will be serializable if the provided
328 * {@code Funnel<T>} is.
329 *
330 * @param funnel the funnel of T's that the constructed {@code BloomFilter<T>} will use
331 * @param expectedInsertions the number of expected insertions to the constructed
332 * {@code BloomFilter<T>}; must be positive
333 * @return a {@code BloomFilter}
334 */
335 public static <T> BloomFilter<T> create(
336 Funnel<? super T> funnel, int expectedInsertions /* n */) {
337 return create(funnel, expectedInsertions, 0.03); // FYI, for 3%, we always get 5 hash functions
338 }
339
340 /*
341 * Cheat sheet:
342 *
343 * m: total bits
344 * n: expected insertions
345 * b: m/n, bits per insertion
346 * p: expected false positive probability
347 *
348 * 1) Optimal k = b * ln2
349 * 2) p = (1 - e ^ (-kn/m))^k
350 * 3) For optimal k: p = 2 ^ (-k) ~= 0.6185^b
351 * 4) For optimal k: m = -nlnp / ((ln2) ^ 2)
352 */
353
354 /**
355 * Computes the optimal k (number of hashes per element inserted in Bloom filter), given the
356 * expected insertions and total number of bits in the Bloom filter.
357 *
358 * See http://en.wikipedia.org/wiki/File:Bloom_filter_fp_probability.svg for the formula.
359 *
360 * @param n expected insertions (must be positive)
361 * @param m total number of bits in Bloom filter (must be positive)
362 */
363 @VisibleForTesting
364 static int optimalNumOfHashFunctions(long n, long m) {
365 // (m / n) * log(2), but avoid truncation due to division!
366 return Math.max(1, (int) Math.round((double) m / n * Math.log(2)));
367 }
368
369 /**
370 * Computes m (total bits of Bloom filter) which is expected to achieve, for the specified
371 * expected insertions, the required false positive probability.
372 *
373 * See http://en.wikipedia.org/wiki/Bloom_filter#Probability_of_false_positives for the formula.
374 *
375 * @param n expected insertions (must be positive)
376 * @param p false positive rate (must be 0 < p < 1)
377 */
378 @VisibleForTesting
379 static long optimalNumOfBits(long n, double p) {
380 if (p == 0) {
381 p = Double.MIN_VALUE;
382 }
383 return (long) (-n * Math.log(p) / (Math.log(2) * Math.log(2)));
384 }
385
386 private Object writeReplace() {
387 return new SerialForm<T>(this);
388 }
389
390 private static class SerialForm<T> implements Serializable {
391 final long[] data;
392 final int numHashFunctions;
393 final Funnel<? super T> funnel;
394 final Strategy strategy;
395
396 SerialForm(BloomFilter<T> bf) {
397 this.data = bf.bits.data;
398 this.numHashFunctions = bf.numHashFunctions;
399 this.funnel = bf.funnel;
400 this.strategy = bf.strategy;
401 }
402 Object readResolve() {
403 return new BloomFilter<T>(new BitArray(data), numHashFunctions, funnel, strategy);
404 }
405 private static final long serialVersionUID = 1;
406 }
407
408 /**
409 * Writes this {@code BloomFilter} to an output stream, with a custom format (not Java
410 * serialization). This has been measured to save at least 400 bytes compared to regular
411 * serialization.
412 *
413 * <p>Use {@linkplain #readFrom(InputStream, Funnel)} to reconstruct the written BloomFilter.
414 */
415 public void writeTo(OutputStream out) throws IOException {
416 /*
417 * Serial form:
418 * 1 signed byte for the strategy
419 * 1 unsigned byte for the number of hash functions
420 * 1 big endian int, the number of longs in our bitset
421 * N big endian longs of our bitset
422 */
423 DataOutputStream dout = new DataOutputStream(out);
424 dout.writeByte(SignedBytes.checkedCast(strategy.ordinal()));
425 dout.writeByte(UnsignedBytes.checkedCast(numHashFunctions)); // note: checked at the c'tor
426 dout.writeInt(bits.data.length);
427 for (long value : bits.data) {
428 dout.writeLong(value);
429 }
430 }
431
432 /**
433 * Reads a byte stream, which was written by {@linkplain #writeTo(OutputStream)}, into
434 * a {@code BloomFilter<T>}.
435 *
436 * The {@code Funnel} to be used is not encoded in the stream, so it must be provided here.
437 * <b>Warning:</b> the funnel provided <b>must</b> behave identically to the one used to
438 * populate the original Bloom filter!
439 *
440 * @throws IOException if the InputStream throws an {@code IOException}, or if its data does
441 * not appear to be a BloomFilter serialized using the
442 * {@linkplain #writeTo(OutputStream)} method.
443 */
444 public static <T> BloomFilter<T> readFrom(InputStream in, Funnel<T> funnel) throws IOException {
445 checkNotNull(in, "InputStream");
446 checkNotNull(funnel, "Funnel");
447 int strategyOrdinal = -1;
448 int numHashFunctions = -1;
449 int dataLength = -1;
450 try {
451 DataInputStream din = new DataInputStream(in);
452 // currently this assumes there is no negative ordinal; will have to be updated if we
453 // add non-stateless strategies (for which we've reserved negative ordinals; see
454 // Strategy.ordinal()).
455 strategyOrdinal = din.readByte();
456 numHashFunctions = UnsignedBytes.toInt(din.readByte());
457 dataLength = din.readInt();
458
459 Strategy strategy = BloomFilterStrategies.values()[strategyOrdinal];
460 long[] data = new long[dataLength];
461 for (int i = 0; i < data.length; i++) {
462 data[i] = din.readLong();
463 }
464 return new BloomFilter<T>(new BitArray(data), numHashFunctions, funnel, strategy);
465 } catch (RuntimeException e) {
466 IOException ioException = new IOException(
467 "Unable to deserialize BloomFilter from InputStream."
468 + " strategyOrdinal: " + strategyOrdinal
469 + " numHashFunctions: " + numHashFunctions
470 + " dataLength: " + dataLength);
471 ioException.initCause(e);
472 throw ioException;
473 }
474 }
475 }